

.NET GC Internals
Introduction

@konradkokosa / @dotnetosorg

1 / 34

2 / 34

.NET GC Internals series

what it is NOT...?

3 / 34

.NET GC Internals series

what it is NOT...?
practical debugging/diagnosing/measuring series

3 / 34

.NET GC Internals series

what it is NOT...?
practical debugging/diagnosing/measuring series
practical best-practices programming series

3 / 34

.NET GC Internals series

what it is NOT...?
practical debugging/diagnosing/measuring series
practical best-practices programming series

what it is...?

3 / 34

.NET GC Internals series

what it is NOT...?
practical debugging/diagnosing/measuring series
practical best-practices programming series

what it is...?
in DEPTH explanation of the most important .NET GC parts 🥰

3 / 34

.NET GC Internals series

what it is NOT...?
practical debugging/diagnosing/measuring series
practical best-practices programming series

what it is...?
in DEPTH explanation of the most important .NET GC parts 🥰
the thing that is always too short during trainings due to the lack of time...

3 / 34

.NET GC Internals series

what it is NOT...?
practical debugging/diagnosing/measuring series
practical best-practices programming series

what it is...?
in DEPTH explanation of the most important .NET GC parts 🥰
the thing that is always too short during trainings due to the lack of time...
"interactive ~1h lectures" - ad hoc drawings, do not hesitate to Q&A

3 / 34

.NET GC Internals series

what it is NOT...?
practical debugging/diagnosing/measuring series
practical best-practices programming series

what it is...?
in DEPTH explanation of the most important .NET GC parts 🥰
the thing that is always too short during trainings due to the lack of time...
"interactive ~1h lectures" - ad hoc drawings, do not hesitate to Q&A
a preliminary material before future trainings

3 / 34

01. .NET GC Internals - Introduction

This module agenda:

mini-series roadmap
fundamentals

manual vs automatic memory management
reference counting and... a little of Rust
tracing Garbage Collection

GC in .NET basics
types
history

�rst dive into the .NET 5 runtime source code
building & debugging CoreCLR
gc.cpp 😍

materials

4 / 34

.NET GC Internals

Agenda:

Introduction
roadmap and fundamentals, source code, ...

Mark phase
roots, object graph traversal, mark stackc, mark/pinned �ag, mark list*, ...

Concurrent Mark phase
mark array/mark word, concurrent visiting, �oating garbage, write watch list, ...

Plan phase
gap, plug, plug tree, brick table, pinned plug, pre/post plug, ...

Sweep phase
free list threading, concurrent sweep, ...

Compact phase
relocate references, compact, ...

Generations
physical organization, card tables, ...

Allocations
bump pointer allocator, free list allocator, allocation context, ...

...?!

5 / 34

Fundamentals

6 / 34

Explicit allocation/deallocation

#include<stdio.h>
int main()
{
 int *ptr;
 ptr = (int*)malloc(sizeof(int));
 if (ptr == 0)
 {
 printf("ERROR: Out of memory\n");
 return 1;
 }
 *ptr = 25;
 printf("%d\n", *ptr);
 free(ptr);
 return 0;
}

Dangers:

7 / 34

Explicit allocation/deallocation

#include<stdio.h>
int main()
{
 int *ptr;
 ptr = (int*)malloc(sizeof(int));
 if (ptr == 0)
 {
 printf("ERROR: Out of memory\n");
 return 1;
 }
 *ptr = 25;
 printf("%d\n", *ptr);
 free(ptr);
 return 0;
}

Dangers:

Memory leak
Dangling pointer

7 / 34

Automatic memory management

Garbage Collector – the old concept:

8 / 34

Automatic memory management

Garbage Collector – the old concept:

John McCarthy. Recursive functions of symbolic expressions and their computation by machine. -
1958
George E. Collins. A method for overlapping and erasure of lists. - 1960

8 / 34

Automatic memory management

Garbage Collector – the old concept:

John McCarthy. Recursive functions of symbolic expressions and their computation by machine. -
1958
George E. Collins. A method for overlapping and erasure of lists. - 1960

so... Lisp

8 / 34

Automatic memory management

reference counting
tracing

9 / 34

Automatic memory management

reference counting
tracing
Rust

9 / 34

https://www.rust-lang.org/

Reference counting

for every object, maintain a counter of references pointing to it
C++ "shared pointers":

int main()
{
 std::shared_ptr<Foo> sh2(new Foo);
 std::cout << sh2.use_count() << '\n';
}

COM
...

10 / 34

Reference counting

pros:
deterministic/immediate deallocation
incremental work
simple implementation (well...)

11 / 34

Reference counting

pros:
deterministic/immediate deallocation
incremental work
simple implementation (well...)

cons:
mutator's overhead

11 / 34

Reference counting

pros:
deterministic/immediate deallocation
incremental work
simple implementation (well...)

cons:
mutator's overhead - although "recent work narrowed the gap between reference counting and
the fastest tracing collectors to within 10%"

11 / 34

Reference counting

pros:
deterministic/immediate deallocation
incremental work
simple implementation (well...)

cons:
mutator's overhead - although "recent work narrowed the gap between reference counting and
the fastest tracing collectors to within 10%"
cyclic references

11 / 34

Reference counting

pros:
deterministic/immediate deallocation
incremental work
simple implementation (well...)

cons:
mutator's overhead - although "recent work narrowed the gap between reference counting and
the fastest tracing collectors to within 10%"
cyclic references

unless something more sophisticated:
deferred reference counting - avoiding counting reference stored on the stack
mixed - Python (and you can disable the GC)
RC Immix - Taking Off the Gloves with Reference Counting Immix paper, '2013

11 / 34

https://www.memorymanagement.org/glossary/d.html
https://www.researchgate.net/publication/262397493_Taking_Off_the_Gloves_with_Reference_Counting_Immix

Af�ne type system - Rust

let s1 = String::from("hello");
let s2 = s1;

println!("{}, world!", s1);

12 / 34

Af�ne type system - Rust

let s1 = String::from("hello");
let s2 = s1;

println!("{}, world!", s1);

error[E0382]: use of moved value: `s1`
 --> src/main.rs:5:28
 |
3 | let s2 = s1;
 | -- value moved here
4 |
5 | println!("{}, world!", s1);
 | ^^ value used here after move
 |
 = note: move occurs because `s1` has type `std::string::String`, which does
 not implement the `Copy` trait

12 / 34

Af�ne type system - Rust

fn main() {
 let s = String::from("hello"); // s comes into scope

 takes_ownership(s); // s's value moves into the function...
 // ... and so is no longer valid here

}
fn takes_ownership(some_string: String) { // some_string comes into scope
 println!("{}", some_string);
} // Here, some_string goes out of scope and `drop` is called. The backing
 // memory is freed.

13 / 34

Af�ne type system - Rust

fn main() {
 let s = String::from("hello");

 use(&s);
}

fn use(some_string: &String) {
 // …
}

14 / 34

Tracing

occasionally trace what is being used and reclaim unused memory

15 / 34

Tracing

occasionally trace what is being used and reclaim unused memory
pros:

simple to use
"faster" - smaller mutators' overhead, only occasional pauses
handles cyclic references out of the box

15 / 34

Tracing

occasionally trace what is being used and reclaim unused memory
pros:

simple to use
"faster" - smaller mutators' overhead, only occasional pauses
handles cyclic references out of the box

cons:
non-deterministic deallocation
not completly "pauseless"
hard to implement

15 / 34

GC in .NET

16 / 34

GC in .NET

There are various runtimes but a few GC implementations:

.NET Framework

.NET Core/.NET 5
Mono
.NET Compact Framework
Silverlight

17 / 34

GC in .NET

There are various runtimes but a few GC implementations:

.NET Framework

.NET Core/.NET 5
Mono
.NET Compact Framework
Silverlight

And in .NET Framework/Core we have four main GCs "�avours" available:

Concurrent (false) Concurrent (true)

Workstation Non-Concurrent Workstation Background Workstation

Server Non-Concurrent Server Background Server

17 / 34

GC in .NET

There are various runtimes but a few GC implementations:

.NET Framework

.NET Core/.NET 5
Mono
.NET Compact Framework
Silverlight

And in .NET Framework/Core we have four main GCs "�avours" available:

Concurrent (false) Concurrent (true)

Workstation Non-Concurrent Workstation Background Workstation

Server Non-Concurrent Server Background Server

They are all some (important) modi�cations of the tracing garbage collection, without reference
counting usage.

17 / 34

GC in .NET

application "type":

18 / 34

GC in .NET

application "type":
Workstation - designed for responsiveness needed in interactive, UI-based applications

pauses as short as possible
good citizen in the whole interactive environment - single Managed Heap (and up to single
CPU core usage)

18 / 34

GC in .NET

application "type":
Workstation - designed for responsiveness needed in interactive, UI-based applications

pauses as short as possible
good citizen in the whole interactive environment - single Managed Heap (and up to single
CPU core usage)

Server - designed for simultaneous, request-based processing
maximizing throughput
"give me all" citizen in the system - multiple Managed Heaps and GC threads

18 / 34

GC in .NET

application "type":
Workstation - designed for responsiveness needed in interactive, UI-based applications

pauses as short as possible
good citizen in the whole interactive environment - single Managed Heap (and up to single
CPU core usage)

Server - designed for simultaneous, request-based processing
maximizing throughput
"give me all" citizen in the system - multiple Managed Heaps and GC threads

concurrency:

18 / 34

GC in .NET

application "type":
Workstation - designed for responsiveness needed in interactive, UI-based applications

pauses as short as possible
good citizen in the whole interactive environment - single Managed Heap (and up to single
CPU core usage)

Server - designed for simultaneous, request-based processing
maximizing throughput
"give me all" citizen in the system - multiple Managed Heaps and GC threads

concurrency:
Non-Concurrent - simple, "stop the world" and do the job

optimal, no-one interrupts

18 / 34

GC in .NET

application "type":
Workstation - designed for responsiveness needed in interactive, UI-based applications

pauses as short as possible
good citizen in the whole interactive environment - single Managed Heap (and up to single
CPU core usage)

Server - designed for simultaneous, request-based processing
maximizing throughput
"give me all" citizen in the system - multiple Managed Heaps and GC threads

concurrency:
Non-Concurrent - simple, "stop the world" and do the job

optimal, no-one interrupts
Background - some parts of the GC run concurrently with the application

almost pauseless
(currently) non-compacting

18 / 34

GC in .NET

Non-Concurrent Workstation:

vs

Background Server:

19 / 34

GC in .NET history

Patric Dussud is the author of the .NET GC
"My dad collects garbage at Microsoft" - Patric Dussud's son

20 / 34

GC in .NET history

Patric Dussud is the author of the .NET GC
"My dad collects garbage at Microsoft" - Patric Dussud's son

So the story goes...:

20 / 34

GC in .NET history

Patric Dussud is the author of the .NET GC
"My dad collects garbage at Microsoft" - Patric Dussud's son

So the story goes...:
JScript - Microsoft's dialect of the ECMAScript standard (avoiding JavaScript trademark issues :))

"four person over a few weekends", with conservative GC prototype written by Patric

20 / 34

GC in .NET history

Patric Dussud is the author of the .NET GC
"My dad collects garbage at Microsoft" - Patric Dussud's son

So the story goes...:
JScript - Microsoft's dialect of the ECMAScript standard (avoiding JavaScript trademark issues :))

"four person over a few weekends", with conservative GC prototype written by Patric
-> "JVM" 0.1 - Microsoft's experimental JVM implementation - based on the same conservative GC
prototype

20 / 34

GC in .NET history

Patric Dussud is the author of the .NET GC
"My dad collects garbage at Microsoft" - Patric Dussud's son

So the story goes...:
JScript - Microsoft's dialect of the ECMAScript standard (avoiding JavaScript trademark issues :))

"four person over a few weekends", with conservative GC prototype written by Patric
-> "JVM" 0.1 - Microsoft's experimental JVM implementation - based on the same conservative GC
prototype
-> "JVM" 0.2 (Lisp to C++) - prototype of a better, generational GC in Lisp (because he felt
comfortable in Lisp for experiments). Then transpiled to C++.

20 / 34

GC in .NET history

Patric Dussud is the author of the .NET GC
"My dad collects garbage at Microsoft" - Patric Dussud's son

So the story goes...:
JScript - Microsoft's dialect of the ECMAScript standard (avoiding JavaScript trademark issues :))

"four person over a few weekends", with conservative GC prototype written by Patric
-> "JVM" 0.1 - Microsoft's experimental JVM implementation - based on the same conservative GC
prototype
-> "JVM" 0.2 (Lisp to C++) - prototype of a better, generational GC in Lisp (because he felt
comfortable in Lisp for experiments). Then transpiled to C++.
~> C++ (CLR) - based on the experiments and the same algorithm

20 / 34

GC in .NET history

Patric Dussud is the author of the .NET GC
"My dad collects garbage at Microsoft" - Patric Dussud's son

So the story goes...:
JScript - Microsoft's dialect of the ECMAScript standard (avoiding JavaScript trademark issues :))

"four person over a few weekends", with conservative GC prototype written by Patric
-> "JVM" 0.1 - Microsoft's experimental JVM implementation - based on the same conservative GC
prototype
-> "JVM" 0.2 (Lisp to C++) - prototype of a better, generational GC in Lisp (because he felt
comfortable in Lisp for experiments). Then transpiled to C++.
~> C++ (CLR) - based on the experiments and the same algorithm

at the times of ~.NET Framework 2.0 taken over by Maoni Stephens

20 / 34

.NET Core source code

21 / 34

.NET Core source code

there was an important repositories merge:
https://github.com/dotnet/runtime - .NET 5.0+
https://github.com/dotnet/coreclr & https://github.com/dotnet/corefx - up to .NET Core 3.1

choose proper branch/tag:
https://github.com/dotnet/runtime/tree/release/5.0

the GC code is there:
https://github.com/dotnet/runtime/tree/release/5.0/src/coreclr/src/gc

22 / 34

https://github.com/dotnet/runtime
https://github.com/dotnet/coreclr
https://github.com/dotnet/corefx
https://github.com/dotnet/runtime/tree/release/5.0
https://github.com/dotnet/runtime/tree/release/5.0/src/coreclr/src/gc

Building .NET Core

Instructions: https://github.com/dotnet/runtime/blob/master/docs/work�ow/README.md
including requirements, fe. for Windows

checkout interesting tag/release: git checkout release/5.0
build in current arch/target, Debug, both runtime & libs, without tests: build.cmd

or not... issue #41886
manually applying PR #41900

Visual Studio solution �le is created as a build artifact under:
<reporoot>\artifacts\obj\coreclr\windows.<platform>.<configuration>\CoreCLR.sln

23 / 34

https://github.com/dotnet/runtime/blob/master/docs/workflow/README.md
https://github.com/dotnet/runtime/blob/master/docs/workflow/requirements/windows-requirements.md
https://github.com/dotnet/runtime/issues/41886
https://github.com/dotnet/runtime/pull/41900

Debugging .NET Core

Instructions are pretty straightforward
we can use Visual Studio (nice experience) or WinDbg (nice SOS)

24 / 34

https://github.com/dotnet/runtime/blob/master/docs/workflow/debugging/coreclr/debugging.md

.NET GC source code

But...
gc.cpp -> few classes
gc.cpp -> ~39000 lines, ~1.35 MB
#ifdef, #ifdef, #ifdef, …

25 / 34

.NET GC source code

GCHeap - public API for the Execution Engine (methods like Allocate or GarbageCollect)
Workstation mode - only single instance
Server mode - additional instances per every Managed Heap

gc_heap - internal API used by GCHeap (allocate, garbage_collect, make_gc_heap, ...)
Workstation mode - all relevants methods are compiled as static
Server mode - as many as Managed Heaps

26 / 34

.NET GC source code - Server/Workstation GC

gc.cpp has <40 kLOC of C++

.\src\gc\gcsvr.cpp de�nes SERVER_GC constant and SVR namespace:

#define SERVER_GC 1
namespace SVR {
#include "gcimpl.h" // <-- defines MULTIPLE_HEAPS
#include "gc.cpp"
}

.\src\gc\gcwks.cpp de�nes WKS namespace:

namespace WKS {
#include "gcimpl.h"
#include "gc.cpp"
}

27 / 34

.NET GC source code - Server/Workstation GC

...and then the whole gc.cpp begins...

heap_segment* gc_heap::get_segment_for_loh (size_t size
 #ifdef MULTIPLE_HEAPS
 , gc_heap* hp
#endif //MULTIPLE_HEAPS
)
{
 #ifndef MULTIPLE_HEAPS
 gc_heap* hp = 0;
#endif //MULTIPLE_HEAPS
 heap_segment* res = hp->get_segment (size, TRUE);

28 / 34

.NET GC source code - Non-Concurrent/Background GC

.\src\gc\gc.cpp consumes BACKGROUND_GC constant
always de�ned in both SVR and WKS versions
dynamic �ag checked

void GCStatistics::AddGCStats(const gc_mechanisms& settings, size_t timeInMSec)
{
 #ifdef BACKGROUND_GC
 if (settings.concurrent)
 {
 bgc.Accumulate((uint32_t)timeInMSec*1000);
 cntBGC++;
 }
 else if (settings.background_p)
 {
 // ...

29 / 34

Books:

The Garbage Collection Handbook - Richard
Jones, Antony Hosking, Eliot Moss
Pro .NET Memory Management
Management - Konrad Kokosa

Materials

Sites:

TooSlowException.com & Pro .NET Memory book site - Konrad Kokosa
Maoni Stephens blog
Maoni's awesome .NET Memory Performance Analysis document
The Book of the Runtime

30 / 34

http://gchandbook.org/
https://prodotnetmemory.com/
https://tooslowexception.com/
https://prodotnetmemory.com/
https://devblogs.microsoft.com/dotnet/author/maoni/
https://github.com/Maoni0/mem-doc/blob/master/doc/.NETMemoryPerformanceAnalysis.md
https://github.com/dotnet/coreclr/tree/master/Documentation/botr

31 / 34

32 / 34

Thank you! Any questions?!

33 / 34

34 / 34

