A WARNING
INTERNALS

INCLUDED

©
/SIS I

NET GC Internals

Introduction

@konradkokosa / @dotnetosorg

1/34

About me

.NET
freelancer/
trainer/
consultant/

.NET
meetups/
conferences/
webinars/

speaker/

rrrrrrrrrrrrrrrrrrrrrr

OutOfMemory card game

—DIAGNOSTICS
— mwc..UELXPILERT&m (still prototyping)
SETMETW LiNux @ ke playoutofmemory.com

» . .
U diagnosticsexpert.com asyncexpert.com

Author of prodotnetmemory.com book,

Konrad Kokosa
Microsoft MVP in .NET, architect,

@konradkokosa
performance & Mechanical Sympathy fan,

- 1
afa N
Microsoft*
Most Valuable \—’_+
Professional o

one of @dotnetosorg, author of
.............. Apress o
w TooSlowException.com @konradkokosa
prodotnetmemory.com

2 /34

NET GC Internals series

e wWhatitis NOT...?

3/34

NET GC Internals series

e what itis NOT...?
o practical debugging/diagnosing/measuring series

3/34

NET GC Internals series

e What it is NOT..?
o practical debugging/diagnosing/measuring series
o practical best-practices programming series

3/34

NET GC Internals series

e What it is NOT..?
o practical debugging/diagnosing/measuring series
o practical best-practices programming series

e whatitis..?

3/34

NET GC Internals series

e what it is NOT..”?
o practical debugging/diagnosing/measuring series
o practical best-practices programming series

e Whatitis..?

o in DEPTH explanation of the most important .NET GC parts &J

3/34

NET GC Internals series

e what it is NOT..”?
o practical debugging/diagnosing/measuring series
o practical best-practices programming series
e Whatitis..?
o in DEPTH explanation of the most important .NET GC parts &J
o the thing that is always too short during trainings due to the lack of time...

3/34

NET GC Internals series

e what it is NOT..”?
o practical debugging/diagnosing/measuring series
o practical best-practices programming series
e Whatitis..?
o in DEPTH explanation of the most important .NET GC parts &J
o the thing that is always too short during trainings due to the lack of time...
o "interactive ~1h lectures" - ad hoc drawings, do not hesitate to Q&A

3/34

NET GC Internals series

e what it is NOT..”?
o practical debugging/diagnosing/measuring series
o practical best-practices programming series
e Whatitis..?
o in DEPTH explanation of the most important .NET GC parts &J
o the thing that is always too short during trainings due to the lack of time...
o "interactive ~1h lectures" - ad hoc drawings, do not hesitate to Q&A
o a preliminary material before future trainings

3/34

01. .NET GC Internals - Introduction

This module agenda:

mini-series roadmap
fundamentals
o manual vs automatic memory management
o reference counting and... a little of Rust
o tracing Garbage Collection
GC in .NET basics
o types
o history
first dive into the .NET 5 runtime source code
o building & debugging CoreCLR
o gc.cpp ©
materials

4 [34

NET GC Internals

Agenda:

e Introduction
o roadmap and fundamentals, source code, ...
 Mark phase
o roots, object graph traversal, mark stackc, mark/pinned flag, mark list* ...
e Concurrent Mark phase
o mark array/mark word, concurrent visiting, floating garbage, write watch list, ...
e Plan phase
o gap, plug, plug tree, brick table, pinned plug, pre/oost plug, ...
» Sweep phase
o free list threading, concurrent sweep, ...
» Compact phase
o relocate references, compact, ...
e Generations
o physical organization, card tables, ...
e Allocations

o bump pointer allocator, free list allocator, allocation context, ...
o .7

5/34

Fundamentals

6/34%

Explicit allocation/deallocation

#include<stdio.h>
int main()

{

int *ptr;

ptr = (int*)malloc(sizeof(int));

if (ptr == 0)

{
printf("ERROR: Out of memory\n");
return 1;

3

*ptr = 25;

printf("%d\n", *ptr);

free(ptr);

return 0;

Dangers:

7 /34

Explicit allocation/deallocation

#include<stdio.h>
int main()
{ .
int *ptr;
ptr = (intx)malloc(sizeof(int));
if (ptr == 0)
{
printf("ERROR: Out of memory\n");
return 1;

3

*ptr = 25;
printf("%d\n", *ptr);
free(ptr);

return 0;

Dangers:

e Memory leak
 Dangling pointer

7 /34

Automatic memory management

Garbage Collector —the old concept:

8/34

Automatic memory management

Garbage Collector —the old concept:

 John McCarthy. Recursive functions of symbolic expressions and their computation by machine. -
1958
e George E. Collins. A method for overlapping and erasure of lists. - 1960

8/34

Automatic memory management

Garbage Collector —the old concept:

 John McCarthy. Recursive functions of symbolic expressions and their computation by machine. -
1958
e George E. Collins. A method for overlapping and erasure of lists. - 1960

SO... Lisp

8/34

Automatic memory management

e reference counting
e tracing

9/34

Automatic memory management

e reference counting
e tracing
e Rust

9/34

https://www.rust-lang.org/

Reference counting

for every object, maintain a counter of references pointing to it
C++ "shared pointers":

int main()

{
std: :shared_ptr<Foo> sh2(new Foo);
std: :cout << sh2.use_count() << '\n';

}

« COM

10/ 34

Reference counting

e Pros:
o deterministic/immediate deallocation
o Incremental work
o simple implementation (well..))

11/34

Reference counting

e Pros:
o deterministic/immediate deallocation
o incremental work
o simple implementation (well..))

e CONS:
o mutator's overhead

11/34

Reference counting

e pros:
o deterministic/immediate deallocation
o incremental work
o simple implementation (well..))
e CONS:
o mutator's overhead - although "recent work narrowed the gap between reference counting and
the fastest tracing collectors to within 10%"

11/34

Reference counting

e pros:
o deterministic/immediate deallocation
o incremental work
o simple implementation (well..))
e CONS:
o mutator's overhead - although "recent work narrowed the gap between reference counting and
the fastest tracing collectors to within 10%"
o cyclic references

11/34

Reference counting

e pros:
o deterministic/immediate deallocation
o incremental work
o simple implementation (well..))
e CONS:
o mutator's overhead - although "recent work narrowed the gap between reference counting and
the fastest tracing collectors to within 10%"
o cyclic references
e unless something more sophisticated:
o deferred reference counting - avoiding counting reference stored on the stack
o mixed - Python (and you can disable the GC)
o RC Immix - Taking_Off the Gloves with Reference Counting_Immix paper, '2013

11/34

https://www.memorymanagement.org/glossary/d.html
https://www.researchgate.net/publication/262397493_Taking_Off_the_Gloves_with_Reference_Counting_Immix

Affine type system - Rust

let si
let s2

String::from("hello");
s1;

println!("{}, world!", s1);

12 /34

Affine type system - Rust

let si
let s2

String::from("hello");
s1;

println!("{}, world!", s1);

error[E0382]: use of moved value: °"si1°
--> src/main.rs:5:28

A* value used here after move

3| let s2 = s1;
| -- value moved here

4 |

5 println!("{}, world!", s1);
I

= note: move occurs because 's1° has type 'std::string::String’, which does
not implement the ‘Copy’ trait

12 /34

Affine type system - Rust

fn main() {
let s = String::from("hello"); // s comes into scope
takes_ownership(s); // s's value moves into the function...
// ... and so is no longer valid here

}
fn takes_ownership(some_string: String) { // some_string comes into scope
println!("{}", some_string);
} // Here, some_string goes out of scope and ‘drop’ is called. The backing
// memory is freed.

13/ 34

Affine type system - Rust

fn main() {
let s = String::from("hello");

use(&s);

}

fn use(some_string: &String) {
// ..
}

14 /34

Tracing

e occasionally trace what is being used and reclaim unused memory

15/ 34

Tracing

e occasionally trace what is being used and reclaim unused memory
e pros:

o simple to use

o "faster" - smaller mutators' overhead, only occasional pauses

o handles cyclic references out of the box

15/ 34

Tracing

e occasionally trace what is being used and reclaim unused memory
e pros:

o simple to use

o "faster" - smaller mutators' overhead, only occasional pauses

o handles cyclic references out of the box
e CONS:

o non-deterministic deallocation

o not completly "pauseless"

o hard to implement

15/ 34

GC in .NET

16 /34

GC in .NET

There are various runtimes but a few GC implementations:

NET Framework

NET Core/NET 5

Mono

NET Compact Framework
Silverlight

17 / 34

GC in .NET

There are various runtimes but a few GC implementations:

NET Framework

NET Core/NET 5

Mono

NET Compact Framework
Silverlight

And in .NET Framework/Core we have four main GCs "flavours" available:

Concurrent (false) Concurrent (true)

Workstation | Non-Concurrent Workstation | Background Workstation

Server Non-Concurrent Server Background Server

17 / 34

GC in .NET

There are various runtimes but a few GC implementations:

NET Framework

NET Core/NET 5

Mono

NET Compact Framework
Silverlight

And in .NET Framework/Core we have four main GCs "flavours" available:

Concurrent (false) Concurrent (true)

Workstation | Non-Concurrent Workstation | Background Workstation

Server Non-Concurrent Server Background Server

They are all some (important) modifications of the tracing garbage collection, without reference
counting usage.

17 / 34

GC in .NET

e application "type":

18 /34

GC in .NET

e application "type":
o Workstation - designed for responsiveness needed in interactive, Ul-based applications
» pauses as short as possible
» good citizen in the whole interactive environment - single Managed Heap (and up to single
CPU core usage)

18 /34

GC in .NET

e application "type":

o Workstation - designed for responsiveness needed in interactive, Ul-based applications
» pauses as short as possible
» good citizen in the whole interactive environment - single Managed Heap (and up to single

CPU core usage)

o Server - designed for simultaneous, request-based processing
= maximizing throughput
= "give me all" citizen in the system - multiple Managed Heaps and GC threads

18 /34

GC in .NET

e application "type":
o Workstation - designed for responsiveness needed in interactive, Ul-based applications
» pauses as short as possible
» good citizen in the whole interactive environment - single Managed Heap (and up to single
CPU core usage)
o Server - designed for simultaneous, request-based processing
= maximizing throughput
= "give me all" citizen in the system - multiple Managed Heaps and GC threads
e concurrency:

18 /34

GC in .NET

e application "type":
o Workstation - designed for responsiveness needed in interactive, Ul-based applications
» pauses as short as possible
» good citizen in the whole interactive environment - single Managed Heap (and up to single
CPU core usage)
o Server - designed for simultaneous, request-based processing
= maximizing throughput
= "give me all" citizen in the system - multiple Managed Heaps and GC threads
e concurrency:
o Non-Concurrent - simple, "stop the world" and do the job
= optimal, no-one interrupts

18 /34

GC in .NET

e application "type":
o Workstation - designed for responsiveness needed in interactive, Ul-based applications
» pauses as short as possible
» good citizen in the whole interactive environment - single Managed Heap (and up to single
CPU core usage)
o Server - designed for simultaneous, request-based processing
= maximizing throughput
= "give me all" citizen in the system - multiple Managed Heaps and GC threads
e concurrency:
o Non-Concurrent - simple, "stop the world" and do the job
= optimal, no-one interrupts
o Background - some parts of the GC run concurrently with the application
» almost pauseless
» (currently) non-compacting

18 /34

GC in .NET

Non-Concurrent Workstation:

gen0/1 gen2+LOH
(I |
[| :
T, ’—E
T T
I 1 |
[[|
VS
Background Server:
gen0/1 full GC
L ' (gén0/1) |
I
T qu > . - |
|
|
I
T, { - - - |
|
o1 | :
TcT o ——— dorbennanaeee ; - ——
|
(. |
BGC, =wmmmremmmeemnes e i - prnnnmemmmnennennae,
|
|1 |
GCy -=mmmmmmmmmmmeee- b il Anlniainiateitielel I ittt ittt Pmmm————— JI --------------------
o | |
GC, -m=mm=mmmmmmmmmme- deedononeannees Aemmmmm e - Frmmemmemmenmennenes

19/ 34

GC in .NET history

e Patric Dussud is the author of the .NET GC
o "My dad collects garbage at Microsoft"- Patric Dussud's son

20/ 34

GC in .NET history

e Patric Dussud is the author of the .NET GC
o "My dad collects garbage at Microsoft"- Patric Dussud's son
e So the story goes....

20/ 34

GC in .NET history

e Patric Dussud is the author of the .NET GC
o "My dad collects garbage at Microsoft"- Patric Dussud's son
e So the story goes....
o JScript - Microsoft's dialect of the ECMAScript standard (avoiding JavaScript trademark issues :))
» "four person over a few weekends", with conservative GC prototype written by Patric

20/ 34

GC in .NET history

e Patric Dussud is the author of the .NET GC
o "My dad collects garbage at Microsoft"- Patric Dussud's son
e So the story goes....
o JScript - Microsoft's dialect of the ECMAScript standard (avoiding JavaScript trademark issues :))
» "four person over a few weekends", with conservative GC prototype written by Patric
o ->"JVM" 0.1 - Microsoft's experimental JVM implementation - based on the same conservative GC
prototype

20/ 34

GC in .NET history

e Patric Dussud is the author of the .NET GC
o "My dad collects garbage at Microsoft"- Patric Dussud's son
e So the story goes....
o JScript - Microsoft's dialect of the ECMAScript standard (avoiding JavaScript trademark issues :))
» "four person over a few weekends", with conservative GC prototype written by Patric
o ->"JVM" 0.1 - Microsoft's experimental JVM implementation - based on the same conservative GC
prototype
o ->"JVM" 0.2 (Lisp to C++) - prototype of a better, generational GC in Lisp (because he felt
comfortable in Lisp for experiments). Then transpiled to C++.

20/ 34

GC in .NET history

e Patric Dussud is the author of the .NET GC
o "My dad collects garbage at Microsoft"- Patric Dussud's son
e So the story goes....
o JScript - Microsoft's dialect of the ECMAScript standard (avoiding JavaScript trademark issues :))
» "four person over a few weekends", with conservative GC prototype written by Patric
o ->"JVM" 0.1 - Microsoft's experimental JVM implementation - based on the same conservative GC
prototype
o ->"JVM" 0.2 (Lisp to C++) - prototype of a better, generational GC in Lisp (because he felt
comfortable in Lisp for experiments). Then transpiled to C++.
o ~>C++ (CLR) - based on the experiments and the same algorithm

20/ 34

GC in .NET history

e Patric Dussud is the author of the .NET GC
o "My dad collects garbage at Microsoft"- Patric Dussud's son
e So the story goes....
o JScript - Microsoft's dialect of the ECMAScript standard (avoiding JavaScript trademark issues :))
» "four person over a few weekends", with conservative GC prototype written by Patric
o ->"JVM" 0.1 - Microsoft's experimental JVM implementation - based on the same conservative GC
prototype
o ->"JVM" 0.2 (Lisp to C++) - prototype of a better, generational GC in Lisp (because he felt
comfortable in Lisp for experiments). Then transpiled to C++.
o ~>C++ (CLR) - based on the experiments and the same algorithm
e at the times of ~NET Framework 2.0 taken over by Maoni Stephens

20/ 34

NET Core source code

21/ 34

NET Core source code

e there was an important repositories merge:

o https:/github.com/dotnet/runtime - .NET 5.0+

o https://github.com/dotnet/coreclr & https:/github.com/dotnet/corefx - up to .NET Core 3.
» choose proper branch/tag:

o https://github.com/dotnet/runtime/tree/release/5.0
e the GC code is there:

o https:/github.com/dotnet/runtime/tree/release/5.0/src/coreclr/src/gc

22 /34

https://github.com/dotnet/runtime
https://github.com/dotnet/coreclr
https://github.com/dotnet/corefx
https://github.com/dotnet/runtime/tree/release/5.0
https://github.com/dotnet/runtime/tree/release/5.0/src/coreclr/src/gc

Building .NET Core

Instructions: https:/github.com/dotnet/runtime/blob/master/docs/workflow/README.md
o including requirements, fe. for Windows
checkout interesting tag/release: git checkout release/5.0
build in current arch/target, Debug, both runtime & libs, without tests: build.cmd
o or not... issue #41886
o manually applying PR #41900
Visual Studio solution file is created as a build artifact under:
<reporoot>\artifacts\obj\coreclr\windows.<platform>.<configuration>\CoreCLR.sln

23 /34

https://github.com/dotnet/runtime/blob/master/docs/workflow/README.md
https://github.com/dotnet/runtime/blob/master/docs/workflow/requirements/windows-requirements.md
https://github.com/dotnet/runtime/issues/41886
https://github.com/dotnet/runtime/pull/41900

Debugging .NET Core

e |nstructions are pretty straightforward
e We can use Visual Studio (nice experience) or WinDbg (nice SOS)

24 [34

https://github.com/dotnet/runtime/blob/master/docs/workflow/debugging/coreclr/debugging.md

NET GC source code

e But..
o gc.cpp -> few classes
o gc.cpp -> ~39000 lines, ~1.35 MB
o #ifdef, #ifdef, #ifdef, ...

25/ 34

NET GC source code

public:

Alloc
GCHeap ¢<{5ar|;|(a:]gecolII?CL‘()

{vm_heap

private:

make_gc_heap()
(gGenGCHeap) make_heap_segment()
make_large_segment()
gC_hea[J allocate()

allocate_large_object(}

garbage_collect()
GC Managed Heap
, Tt oETmEEEEEEEEEEEEEE e m 1
__________________________ o
. 1 i
9.} generation start_segment heap_segment | rest of the segment :
< generation = i—| heap_segment | rest of the segment :
g T . '
E 2 @x" :
s H2L generation |—=2riseament N | heap segment | rest of the segment :
1 -
Bl generation —Sert-segment heap_segment | rest of the segment :
1

» GCHeap - public API for the Execution Engine (methods like Allocate or GarbageCollect)
o Workstation mode - only single instance
o Server mode - additional instances per every Managed Heap

e gc_heap - internal API used by GCHeap (allocate, garbage_collect, make_gc_heap, ...)
o Workstation mode - all relevants methods are compiled as static

o Server mode - as many as Managed Heaps
26 /34

.NET GC source code - Server/Workstation CC

gc.cpp has <40 kLOC of C++

.\src\gc\gcsvr.cpp defines SERVER_GC constant and SVR hamespace:

#define SERVER_GC 1
namespace SVR {
#include "gcimpl.h" // <-- defines MULTIPLE_HEAPS

#include "gc.cpp"
3

.\src\gc\gcwks. cpp defines WKS namespace:

namespace WKS {
#include "gcimpl.h"
#include "gc.cpp"

}

27 /34

.NET GC source code - Server/Workstation CC

..and then the whole gc.cpp begins...

heap_segment* gc_heap::get_segment_for_loh (size_t size
#ifdef MULTIPLE_HEAPS
, gc_heap* hp

)

#endif //MULTIPLE_HEAPS

{
#ifndef MULTIPLE_HEAPS

gc_heap* hp = 0;
#endif //MULTIPLE_HEAPS
heap_segment* res = hp->get_segment (size, TRUE);

28 /34

.NET GC source code - Non-Concurrent/Background GC

e .\src\gc\gc.cpp consumes BACKGROUND_GC constant
e always defined in both SVR and WKS versions
e dynamic flag checked

void GCStatistics::AddGCStats(const gc_mechanisms& settings, size_t timeInMSec)

{
#ifdef BACKGROUND_GC

if (settings.concurrent)

{
bgc.Accumulate((uint32_t)timeInMSec*1000);
cntBGC++;

}

else if (settings.background_p)

{
// ...

29 /34

Materials

Books:

» The Garbage Collection Handbook - Richard ™ o .NET‘
Jones, Antony Hosking, Eliot Moss Memory

e Pro .NET Memory Management _ 288 Management
Management - Konrad Kokosa | /s :

de, Performance, and

c B .. Apress”
Sites:

e TooSlowException.com & Pro .NET Memory book site - Konrad Kokosa
 Maoni Stephens blog

e Maoni's awesome NET Memory Performance Analysis document
e The Book of the Runtime

30 /34

http://gchandbook.org/
https://prodotnetmemory.com/
https://tooslowexception.com/
https://prodotnetmemory.com/
https://devblogs.microsoft.com/dotnet/author/maoni/
https://github.com/Maoni0/mem-doc/blob/master/doc/.NETMemoryPerformanceAnalysis.md
https://github.com/dotnet/coreclr/tree/master/Documentation/botr

disk

virtual
bytes

Virtual Domain

Handle root

NET Memory Management Poster"’

by @konradkokosa https://prodotnetmemory.com

memory High frequency heap P - . N . \)
private —ovate Process memory T ’ ™,/ Visualization of objects in SOH A
N orting: bvtes Thread Local Storage Module, Module, Modules o ' Global handle
Tt [TLS) ! i Gen 2 : table map
) ThreadLocalinfo | ThreadStatic I E——— |
Di Sk Thread ! i E ;ieg sJLEr:c?r i bucke
. per ApgDomain primitive value-type ! ' (thread static) ! Strong
swap/page file and Miodule thread statics blob 1 ~— i : handles
rreadieal ! [ype) Type; T |
Kernel space ThreadlLocalMog? H = - i Pinned
' i Small object or ! Inne
128 TB L Mod| [e, Madule; Module; ; ' e ot ! handles
' LargeHeaphiand|eTa il (static) H .
[P tu| " ‘MT \ ‘ ‘ | | ‘ ‘ i ! 8 citer nandles
- fi e, B ! jec - 1
other apps... AppDomain fields of Typ Pes ! ' P . '
Type, ! ! ! Smallinterned | s =)
Assefmbly ; e e e 1 || g | DN
i L) KGen 0 i T T L] L] T T
(”?"C":I :i) primitive value-type ! o Small ! +—LoH]| Critical »Neimale— free —»
typically statics blob | ALargeHeap#andleT: L object n. ! %—%_E
DomainLocal MgdTe " Jovjectn | 1 ‘MT| 11 | fenlyonstaci | Finalization fReachable
E i E Small Finalization root queue queue
Vser space oo |) v ; mmslohen | pmeubl dmddecs
128 TB PUFCInE Large i (dead, waiting !
Type, Type, Type: ! object MT Large } i for finalization) !
other apps...) . ! (thread static) object iy H
_ Thread stack String literal map | (static) P Reference root H
buckets 1 - ! Card tables
B i ‘ Large 1 Small H {older-toyounger croos
Page | Large interned object i object ! e oratences
Y . string 1 {only in CPU) !
committed or reserved |Managed Heap Stack root . -
r
RAM segment_info pyg, SOH - Heap 13 \ Card tables roots
o Genl Gen 0 '
= [Thread stack | i
other apps. = % Gen 2/1/0 LOH
P LY
] —— - = ’
. E ‘ K, ., ephemefalsegments gay pean o i| LOH-Heap1 LOH - Heap 2
committed B Domain T T2, *. feontain gend and geri) [(cbjects bigger than 85000 bytes)
o | free objects alloc rallocs S)
o _ i space ctx ctx % 3 | JUET
committed a Private CLR heap . (atfree gap),” (atthe end) - - L
—é Thread stack i Y ; b 3 ererence
| commite: D 3 —
L [Brivate CLR heap L : . !
c . H
., ' points to MT field
free g reserved 5 . E ‘.‘
% DLLs *, Allocation con oo @ a2
c “Hump-pointer aHocat\orls : managed pointer (& Alignpan & L # g S
s T'| T;_ H (zeros) . B
= DULs tack stack H —
other apps. ’7 stac stac L omayalso pointste | aesmtteeeeaan e
il - e -

 O® ®

alloc_ptr

gy,
.mﬁ.ﬁﬂe—\ cPU CPU

Memory bUS Core #1 Core #2

[registers | [registers

alloc_limit

Enregistered root

| Based on current instruction pointer and GCInfo

1) Based on NET Core for Background Server GC, showing 2 CPU cores and 3 user threads, 64-bit Windows - and only example roots/pointers
2) There may be multiple blocks of memary (for SOH/LOH segments) if GC decides so.
3) When gen2 grows, dedicated memory segments will be created for them

Legend: l:l Ap

data

plication CLR interna

data

| . fom w
P
._/) Pointer (color denotes type)

Root

ver1.01

31/ 34

-NET Memory Management Poster Il

by @konradkokosa https://prodotnetmemory.com

"Stop-the-world" GC

Background GC

emmmmmmmmmmmmmmmmm oo . suspends all threads, may compact with optional Foreground GCs

: : A suspends all threads only fUArsome time, may not compact
AllocSmall - running out of budget on 10.0s gen0/1/2 ! Foreground GC ! 11.0s
Gen 0 during object al lacation, I | {géno/1} i

AllocLarge - running out of budget on
LOH during large object allocation

OutOfSpaceSOH - running out of SOH
ephemeral segment space

application
threads

OutOfSpacelOH - running out of LOH
segments space

! -

Induced - called explictly from code

0 X |
LowMemory - operating system 8 3 6C, pavEiime |
has sent low-memory notification § 110 i Background GC
Internal - various GC reasons, like: | }
AppDomain unload or cleaning up | !)
; ast GC time
©JThreadobles . . L ‘ Tncluiding concurrent part

|
]
|
|
|
I
|
|
|
|
>
|
|
|
|
|

time since the previous GC

last GC time
since previous GC time

i % Time in GC = %]

GC types:

(as shown in Perfview]

!
| ___________lasshowninPeriew) _________
: N - non-concurrent GC (blocking)

1 B - Background GC

: FF - Foreground GC (blocking collection of an ephemeral
1 generations during Background GC)

: I - induced (manually triggered) blocking GC

1+ I-induced non-blocking GC

(D) BGCDrainMark

BGC1StConStop
BGC2ndNonConStart

BGCRevisit

, .
| |
| |
T ‘ | > =< n
| |
| | \
Tz ; ; - \ T2
| |
sus.';md tlmel pauseltime redume t{mc [
! | I ! : Y GGy !
| | v sweep | Thread suspendfresume | |
. gyt I
|| 1. mark | or compact | Every managed method may be: ! !
Ll Cc N !
B Fully interruptible - thread running it 1
1, initial M. plan V. relocate may be suspended at any time :

1
1
: |
: Partially interruptible - thread running 1
| it may be suspended at specified safe

|, Choose condemned generation H

Il. Marking of reachable objects in the condemned :

and younger generations. 1 GClnfo data knows where GC roots live
Ill. Plan - the GC decides whether compacting is worth 1 (what registers, where on stack) for the
doing or maybe sweeping Is just enough " current method instruction
IV. Sweep or...

V. Relocate and Compact - to update all addresses

to the new ones
Workstation GC

minimize pauses for better interactivity
Workstation Non-cencurent Background Workstation

points (mostly, method calls)

gennn. oenzion genonzz Foraaroumd oC
| | | oty

I — e e e

|
T H
! &c, L

[rr—

® No GC threads
 Only "stop-the-world" GC (may compact)

 Single GC thread
» Gen 0/1 (and sometimes 2) - "stop-the-world" GC (may compact)
* Mostly - Background GC (concurrent sweep)

1) Based on .NET Core and 2 CPU cores with 2 user threads, 64-bit Windows
2) Many identifiers (like AlloeSmall or % Time in GC) are used as defined in PerfView tool

H;W

BGC2ndConStart
BGC2ndConStop

g
§ BGC2ndNonConStop

GC/start

L ®0| | ®

0+ Foreground GCs

initial Il. concurrent . final IV, concurrent
mark mark sweep
la, Choose condemned generation
Ib. Initial marking - finding GC roots

II. Concurrent Marking of reachable objects in the condemned

and younger generations, starting from the initial GC roats

1ll, Final Mark - revisit reachability from pages that has been modified

during concurrent marking
IV, Concurrent Sweep

LOH allocations not allo
(produces LOH Allocation Pause (due to

\ background GC) > 200 Msec report in Peeriew)
s W BGCAllocWaitBegin

Wi BGCAllocWaitEnd

Server GC

maximize resources usage for better throughput

Server Non-concurrent

o0 oe

Background Server

e e
tpbuiy

J S N N o = S |
OO

86,
86C,
GG
® By default, N GC threads (N - # of cores) 66
» Only "stop-the-world" GC (may compact)
» By default, N GC threads (N - # of cores)
= Gen 0/1 (and sometimes 2) - "stop-the-world" GC (may compact)
Mostly - Background GC (concurrent sweep)
Legend: :l Working D Suspending Working __.___..Suspended
user thread thread GC thread thread ver1.02

32 /34

Thank you! Any questions?!

33 /34

34 /34

